metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis{1-[(1*H*-benzimidazol-2-yl)methyl]-1*H*-imidazole-κN³}dichloridocadmium hexahydrate

Xin-Nian Xie, Meng Lu, Juan Yuan and Huai-Xia Yang*

Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China Correspondence e-mail: 13623712409@139.com

Received 2 May 2012; accepted 6 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.123; data-to-parameter ratio = 19.3.

In the title complex, $[CdCl_2(C_{11}H_{10}N_4)_2(H_2O)_2]\cdot 6H_2O$, the Cd^{II} atom is located on a twofold rotation axis and is coordinated by two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-imidazole ligands and two water O atoms in equatorial positions and by two Cl atoms in axial positions, leading to an elongated octahedral environment. The two coordinating and two of the lattice water molecules are also located on twofold rotation axes. In the crystal, complex molecules and solvent water molecules are linked through a complex intermolecular N-H···O, O-H···N, O-H···O and O-H···Cl hydrogen-bonding scheme into a three-dimensional network.

Related literature

For background information on Cd^{II} complexes constructed from *N*-heterocyclic ligands see: Jin *et al.* (2012); Liu *et al.* (2008).

Experimental

Crystal data $[CdCl_2(C_{11}H_{10}N_4)_2(H_2O)_2] \cdot 6H_2O$ $M_r = 723.89$ Monoclinic, P2/c

a = 8.3562 (17) Åb = 10.236 (2) Åc = 17.972 (4) Å $\beta = 98.80 (3)^{\circ}$ $V = 1519.1 (5) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2004)
$T_{\min} = 0.847, \ T_{\max} = 0.878$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 188 parameters $wR(F^2) = 0.123$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.66$ e Å $^{-3}$ 3632 reflections $\Delta \rho_{min} = -0.63$ e Å $^{-3}$

Table 1

Selected bond lengths (Å).

Cd1-N1	2.289 (3)	Cd1-O1	2.362 (4)
Cd1-O2	2.349 (4)	Cd1-Cl1	2.6445 (13)

 $\mu = 0.95 \text{ mm}^{-1}$

 $0.18 \times 0.17 \times 0.14 \text{ mm}$

18365 measured reflections

3632 independent reflections 3345 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.044$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3−H3A…O6	0.86	2.15	2.909 (4)	148
$O2-H2W \cdots O4$	0.85	1.95	2.776 (3)	162
$O4 - H4W \cdot \cdot \cdot N4$	0.85	1.91	2.756 (4)	171
O4-H5WO3	0.85	2.06	2.857 (4)	156
$O3-H3WCl1^{i}$	0.85	2.41	3.234 (3)	165
$O5-H6WCl1^{i}$	0.85	2.28	3.110 (3)	164
$O1 - H1W \cdots O6^{ii}$	0.85	1.88	2.723 (4)	173
$O6-H7WO5^{iii}$	0.85	1.98	2.799 (4)	162
$O6-H8W \cdots O4^{iv}$	0.85	1.96	2.737 (4)	152
Symmetry codes:	(i) $-x + 1 y$	$-7 + \frac{1}{2}$ (ii)	-r + 1 - v + 1	-7 + 1 (iii)

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x, -y, $z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The study was supported by the Science and Technology Department of Henan Province (082102330003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2627).

References

- Jin, G.-H., Yang, Y., Zhou, X.-L. & Meng, X.-R. (2012). Z. Naturforsch. Teil B, 67, 29–35.
- Liu, H.-J., Tao, X.-T., Yang, J.-X., Yan, Y.-X., Ren, Y., Zhao, H.-P., Xin, Q., Yu, W.-T. & Jiang, M.-H. (2008). Cryst. Growth Des. 8, 259–264.

Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m754 [doi:10.1107/S160053681202034X]

Diaquabis{1-[(1*H*-benzimidazol-2-yl)methyl]-1*H*-imidazole- κN^3 }dichloridocadmium hexahydrate

Xin-Nian Xie, Meng Lu, Juan Yuan and Huai-Xia Yang

Comment

A large number of Cd^{II} complexes constructed from *N*-heterocyclic ligands have been synthesized since the Cd^{II} ion is a useful building block or connecting node. Moreover, closed-shell d^{10} — d^{10} Cd—Cd interactions can often give rise to supramolecular motifs and interesting properties (Jin *et al.*, 2012; Liu *et al.*, 2008). In order to further explore new such Cd-containing compounds and their structures, we selected 1-((1*H*-benzimidazol-1-yl)methyl)-1*H*-imidazole as a ligand to self-assembly with CdCl₂ and obtained the title complex, {[CdCl₂(C₁₁H₁₀N₄)₂(H₂O)₂](H₂O)₆}.

The Cd^{II} ion displays an elongated octahedral coordination environment defined by atoms N1, N1A from two monodentate 1-((1*H*-benzimidazol-1-yl)methyl)-1*H*-imidazole ligands and two O atoms (O1 and O2) from two water molecules in equatorial positions, and by two terminal Cl atoms (Cl1 and Cl1A) in axial positions (Fig. 1). The benzimidazole and the imidazole moieties are nearly orthogonal to each other, with a dihedral angle of 84.27 (17) °. N— H…O, O—H…N, O—H…O and O—H…Cl hydrogen bonds (Table 2) between benzimidazole groups and solvent water molecules, between solvent water molecules and benzimidazole N atoms, between coordinating water molecules and solvent water molecules and Cl atoms and between solvent water molecules and solvent water molecules for adjacent molecules consolidate the crystal packing (Fig. 2).

Experimental

A mixture of $CdCl_2$ (0.1 mmol), 1-((1*H*-benzimidazol-1-yl)methyl)-1*H*-imidazole (0.1 mmol) and water (10 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 353 K for 72 h, then cooled to room temperature. Colourless crystals were obtained from the filtrate and dried in air.

Refinement

H atoms bound to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) Å and 0.97 (CH₂) Å, N—H = 0.86 Å. H atoms bound to O atoms were found from difference maps and refined with distance restraints of O—H = 0.85 Å. All H atoms were refined with $U_{iso}(H) = 1.2 U_{eq}(C,N,O)$.

Computing details

Data collection: *CrystalClear* (Rigaku/MSC, 2004); cell refinement: *CrystalClear* (Rigaku/MSC, 2004); data reduction: *CrystalClear* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

View of the title complex showing labeling and 30% probability displacement ellipsolids. [Symmetry code A: -x + 1, *y*, -z + 1/2.]

Figure 2

Packing plot of the title complex with hydrogen bonds indicated by dashed lines.

Diaquabis{1-[(1*H*-benzimidazol-2-yl)methyl]-1*H*-imidazole- κN³}dichloridocadmium hexahydrate

Crystal data	
$[CdCl_2(C_{11}H_{10}N_4)_2(H_2O)_2]\cdot 6H_2O$	<i>b</i> = 10.236 (2) Å
$M_r = 723.89$	c = 17.972 (4) Å
Monoclinic, $P2/c$	$\beta = 98.80 \ (3)^{\circ}$
a = 8.3562 (17) Å	V = 1519.1 (5) Å ³

Z = 2 F(000) = 740 $D_x = 1.583 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4042 reflections

Data collection

Rigaku Saturn	18365 measured reflections
diffractometer	3632 independent reflections
Radiation source: fine-focus sealed tube	3345 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.044$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan	$k = -13 \rightarrow 12$
(CrystalClear; Rigaku/MSC, 2004)	$l = -23 \rightarrow 23$
$T_{\min} = 0.847, \ T_{\max} = 0.878$	
Refinement	

 $\theta = 2.0 - 27.9^{\circ}$

 $\mu = 0.95 \text{ mm}^{-1}$

Prism, colorless $0.18 \times 0.17 \times 0.14$ mm

T = 293 K

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.047$ Hydrogen site location: inferred from $wR(F^2) = 0.123$ neighbouring sites S = 1.00H-atom parameters constrained 3632 reflections $w = 1/[\sigma^2(F_o^2) + (0.0656P)^2 + 1.0048P]$ 188 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.63 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.5000	0.48165 (3)	0.2500	0.03867 (14)	
C11	0.79282 (12)	0.51534 (10)	0.32722 (6)	0.0508 (2)	
N1	0.4065 (3)	0.4475 (3)	0.36168 (15)	0.0386 (6)	
N2	0.3973 (3)	0.3597 (3)	0.47262 (14)	0.0344 (6)	
N3	0.3091 (4)	0.0802 (3)	0.58812 (15)	0.0411 (6)	
H3A	0.3310	0.1032	0.6346	0.049*	
N4	0.2998 (3)	0.0876 (3)	0.46398 (14)	0.0393 (6)	
01	0.5000	0.7124 (4)	0.2500	0.0972 (19)	
H1W	0.5785	0.7648	0.2488	0.117*	
02	0.5000	0.2521 (4)	0.2500	0.0611 (11)	
H2W	0.4388	0.1999	0.2694	0.073*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

03	0.0000	0.3013 (4)	0.2500	0.0536 (9)
H3W	0.0609	0.3445	0.2252	0.064*
O4	0.2544 (3)	0.1273 (2)	0.31049 (13)	0.0485 (6)
H4W	0.2700	0.1245	0.3583	0.058*
H5W	0.1619	0.1616	0.2969	0.058*
O5	0.0000	0.7111 (4)	0.2500	0.0699 (12)
H6W	0.0520	0.6677	0.2212	0.084*
O6	0.2530 (4)	0.1123 (3)	0.74290 (16)	0.0614 (8)
H7W	0.1698	0.1537	0.7519	0.074*
H8W	0.2717	0.0525	0.7759	0.074*
C1	0.4765 (4)	0.3664 (3)	0.41313 (18)	0.0380 (7)
H1	0.5698	0.3192	0.4089	0.046*
C2	0.2756 (4)	0.4962 (3)	0.3900 (2)	0.0401 (7)
H2	0.2025	0.5568	0.3658	0.048*
C3	0.2686 (4)	0.4432 (4)	0.45811 (19)	0.0417 (7)
Н3	0.1915	0.4601	0.4891	0.050*
C4	0.4356 (4)	0.2751 (3)	0.53799 (18)	0.0419 (7)
H4A	0.4080	0.3195	0.5820	0.050*
H4B	0.5511	0.2581	0.5467	0.050*
C5	0.3464 (4)	0.1478 (3)	0.52811 (17)	0.0361 (7)
C6	0.2252 (4)	-0.0263 (3)	0.48364 (19)	0.0373 (7)
C7	0.1457 (5)	-0.1248 (3)	0.4376 (2)	0.0470 (8)
H7	0.1395	-0.1222	0.3855	0.056*
C8	0.0773 (5)	-0.2257 (4)	0.4728 (2)	0.0511 (9)
H8	0.0243	-0.2924	0.4437	0.061*
С9	0.0854 (5)	-0.2303 (4)	0.5508 (2)	0.0517 (9)
Н9	0.0380	-0.3001	0.5724	0.062*
C10	0.1616 (5)	-0.1345 (4)	0.5965 (2)	0.0503 (9)
H10	0.1675	-0.1379	0.6486	0.060*
C11	0.2299 (4)	-0.0316 (3)	0.56101 (19)	0.0385 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0458 (2)	0.0382 (2)	0.0342 (2)	0.000	0.01327 (14)	0.000
Cl1	0.0476 (5)	0.0586 (6)	0.0476 (5)	-0.0031 (4)	0.0113 (4)	0.0018 (4)
N1	0.0438 (15)	0.0381 (15)	0.0355 (14)	-0.0018 (12)	0.0117 (12)	0.0001 (11)
N2	0.0388 (14)	0.0327 (14)	0.0328 (13)	-0.0046 (11)	0.0087 (11)	-0.0006 (10)
N3	0.0540 (17)	0.0415 (16)	0.0277 (12)	-0.0035 (13)	0.0059 (11)	0.0014 (11)
N4	0.0481 (16)	0.0393 (16)	0.0318 (13)	-0.0065 (12)	0.0099 (11)	-0.0001 (11)
01	0.064 (3)	0.038 (2)	0.186 (6)	0.000	0.006 (3)	0.000
O2	0.081 (3)	0.0365 (19)	0.077 (3)	0.000	0.048 (2)	0.000
O3	0.058 (2)	0.051 (2)	0.054 (2)	0.000	0.0149 (18)	0.000
O4	0.0614 (16)	0.0493 (15)	0.0362 (12)	-0.0038 (12)	0.0122 (11)	0.0005 (11)
O5	0.069 (3)	0.052 (2)	0.098 (3)	0.000	0.039 (2)	0.000
O6	0.077 (2)	0.0509 (16)	0.0608 (17)	0.0045 (14)	0.0253 (15)	0.0083 (13)
C1	0.0393 (17)	0.0388 (17)	0.0383 (16)	0.0052 (13)	0.0131 (13)	0.0004 (13)
C2	0.0389 (18)	0.0393 (18)	0.0433 (19)	0.0060 (13)	0.0102 (14)	0.0026 (13)
C3	0.0403 (18)	0.0451 (19)	0.0435 (18)	0.0019 (14)	0.0181 (14)	-0.0022 (15)
C4	0.0484 (19)	0.0424 (18)	0.0337 (16)	-0.0060 (15)	0.0026 (14)	0.0012 (13)

supplementary materials

C5	0.0410 (17)	0.0357 (17)	0.0324 (15)	0.0000 (13)	0.0086 (13)	0.0012 (13)
C6	0.0415 (17)	0.0351 (17)	0.0360 (16)	0.0015 (13)	0.0082 (13)	0.0045 (13)
C7	0.057 (2)	0.0396 (19)	0.0442 (19)	-0.0036 (16)	0.0091 (16)	-0.0046 (15)
C8	0.049 (2)	0.0362 (18)	0.066 (2)	-0.0021 (15)	0.0052 (18)	-0.0041 (17)
C9	0.050 (2)	0.0383 (19)	0.067 (2)	-0.0038 (16)	0.0099 (18)	0.0153 (17)
C10	0.059 (2)	0.046 (2)	0.0466 (19)	-0.0031 (17)	0.0098 (17)	0.0145 (16)
C11	0.0418 (18)	0.0367 (17)	0.0375 (17)	0.0007 (13)	0.0078 (14)	0.0051 (13)

Geometric parameters (Å, °)

Cd1—N1	2.289 (3)	O5—H6W	0.8500
Cd1—N1 ⁱ	2.289 (3)	O6—H7W	0.8499
Cd1—O2	2.349 (4)	O6—H8W	0.8500
Cd1—O1	2.362 (4)	C1—H1	0.9300
Cd1—Cl1	2.6445 (13)	C2—C3	1.349 (5)
Cd1—Cl1 ⁱ	2.6445 (13)	C2—H2	0.9300
N1—C1	1.311 (4)	С3—Н3	0.9300
N1—C2	1.369 (4)	C4—C5	1.498 (5)
N2—C1	1.343 (4)	C4—H4A	0.9700
N2—C3	1.367 (4)	C4—H4B	0.9700
N2—C4	1.455 (4)	C6—C11	1.386 (5)
N3—C5	1.357 (4)	C6—C7	1.405 (5)
N3—C11	1.373 (4)	C7—C8	1.380 (5)
N3—H3A	0.8600	С7—Н7	0.9300
N4—C5	1.312 (4)	C8—C9	1.394 (6)
N4—C6	1.394 (4)	C8—H8	0.9300
O1—H1W	0.8500	C9—C10	1.372 (6)
O2—H2W	0.8501	С9—Н9	0.9300
O3—H3W	0.8500	C10—C11	1.399 (5)
O4—H4W	0.8502	C10—H10	0.9300
O4—H5W	0.8499		
N1—Cd1—N1 ⁱ	162.42 (14)	C3—C2—H2	125.1
N1—Cd1—O2	81.21 (7)	N1—C2—H2	125.1
N1 ⁱ —Cd1—O2	81.21 (7)	C2—C3—N2	106.4 (3)
N1—Cd1—O1	98.79 (7)	С2—С3—Н3	126.8
$N1^{i}$ —Cd1—O1	98.79 (7)	N2—C3—H3	126.8
O2—Cd1—O1	180.000 (1)	N2—C4—C5	112.2 (3)
N1—Cd1—Cl1	88.40 (8)	N2—C4—H4A	109.2
N1 ⁱ —Cd1—Cl1	93.88 (8)	C5—C4—H4A	109.2
O2—Cd1—Cl1	97.49 (2)	N2—C4—H4B	109.2
O1—Cd1—Cl1	82.51 (2)	C5—C4—H4B	109.2
N1—Cd1—Cl1 ⁱ	93.88 (8)	H4A—C4—H4B	107.9
N1 ⁱ —Cd1—Cl1 ⁱ	88.40 (8)	N4—C5—N3	112.7 (3)
O2—Cd1—Cl1 ⁱ	97.49 (2)	N4—C5—C4	126.0 (3)
O1—Cd1—Cl1 ⁱ	82.51 (2)	N3—C5—C4	121.3 (3)
Cl1—Cd1—Cl1 ⁱ	165.01 (5)	C11—C6—N4	110.0 (3)
C1—N1—C2	105.3 (3)	C11—C6—C7	120.1 (3)
C1—N1—Cd1	122.7 (2)	N4—C6—C7	129.9 (3)
C2—N1—Cd1	132.0 (2)	C8—C7—C6	117.3 (3)

106.6 (3)	С8—С7—Н7	121.3
126.8 (3)	С6—С7—Н7	121.3
126.6 (3)	С7—С8—С9	121.8 (4)
107.4 (3)	С7—С8—Н8	119.1
126.3	С9—С8—Н8	119.1
126.3	C10—C9—C8	121.7 (3)
104.7 (3)	С10—С9—Н9	119.2
129.1	С8—С9—Н9	119.2
129.0	C9—C10—C11	116.7 (3)
107.3	С9—С10—Н10	121.7
107.2	C11—C10—H10	121.7
111.9 (3)	N3—C11—C6	105.2 (3)
124.1	N3—C11—C10	132.4 (3)
124.1	C6-C11-C10	122.4 (3)
109.8 (3)		
48.6 (3)	C6—N4—C5—N3	0.8 (4)
48.6 (3)	C6—N4—C5—C4	179.0 (3)
-131.4 (3)	C11—N3—C5—N4	-1.0 (4)
-49.2 (3)	C11—N3—C5—C4	-179.4 (3)
145.6 (3)	N2-C4-C5-N4	29.7 (5)
-129.5 (3)	N2-C4-C5-N3	-152.2 (3)
-129.5 (3)	C5—N4—C6—C11	-0.3 (4)
50.5 (3)	C5—N4—C6—C7	176.5 (4)
132.7 (3)	C11—C6—C7—C8	-1.2 (5)
-32.5 (3)	N4—C6—C7—C8	-177.8 (4)
0.4 (4)	C6—C7—C8—C9	0.2 (5)
-178.1 (2)	C7—C8—C9—C10	0.2 (6)
-0.5 (4)	C8—C9—C10—C11	0.3 (6)
176.6 (3)	C5—N3—C11—C6	0.8 (4)
-0.2 (4)	C5—N3—C11—C10	-178.5 (4)
178.1 (2)	N4—C6—C11—N3	-0.3 (4)
-0.1 (4)	C7—C6—C11—N3	-177.5 (3)
0.3 (4)	N4-C6-C11-C10	179.0 (3)
-176.7 (3)	C7—C6—C11—C10	1.8 (5)
-91.6 (4)	C9—C10—C11—N3	177.8 (4)
84.8 (4)	C9—C10—C11—C6	-1.4 (5)
	106.6 (3) $126.8 (3)$ $126.6 (3)$ $107.4 (3)$ 126.3 126.3 126.3 $104.7 (3)$ 129.1 129.0 107.3 107.2 $111.9 (3)$ 124.1 124.1 $109.8 (3)$ $48.6 (3)$ $-49.2 (3)$ $145.6 (3)$ $-129.5 (3)$ $-129.5 (3)$ $-129.5 (3)$ $-129.5 (3)$ $-129.5 (3)$ $-32.5 (3)$ $0.4 (4)$ $-178.1 (2)$ $-0.5 (4)$ $176.6 (3)$ $-0.2 (4)$ $178.1 (2)$ $-0.1 (4)$ $0.3 (4)$ $-176.7 (3)$ $-91.6 (4)$ $84.8 (4)$	106.6 (3) $C8-C7-H7$ $126.6 (3)$ $C7-C8-C9$ $107.4 (3)$ $C7-C8-H8$ 126.3 $C9-C8-H8$ 126.3 $C10-C9-C8$ $104.7 (3)$ $C10-C9-H9$ 129.1 $C8-C9-H9$ 129.0 $C9-C10-C11$ 107.3 $C9-C10-H10$ 107.2 $C11-C10-H10$ $111.9 (3)$ $N3-C11-C6$ 124.1 $N3-C11-C10$ $109.8 (3)$ $C6-N4-C5-N3$ $48.6 (3)$ $C6-N4-C5-N4$ $-131.4 (3)$ $C11-N3-C5-N4$ $-49.2 (3)$ $C11-N3-C5-N4$ $-49.2 (3)$ $C11-N3-C5-N4$ $-49.2 (3)$ $C11-N3-C5-N4$ $-129.5 (3)$ $N2-C4-C5-N3$ $-129.5 (3)$ $C5-N4-C6-C11$ $50.5 (3)$ $C5-N4-C6-C7$ $132.7 (3)$ $C11-C6-C7-C8$ $-32.5 (3)$ $N4-C6-C7-C8$ $-32.5 (3)$ $N4-C6-C10-C11$ $-178.1 (2)$ $C7-C8-C9-C10$ $-0.5 (4)$ $C8-O9-C10-C11$ $-178.1 (2)$ $N4-C6-C11-N3$ $-0.1 (4)$

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
N3—H3A…O6	0.86	2.15	2.909 (4)	148
O2—H2 <i>W</i> ···O4	0.85	1.95	2.776 (3)	162
O4—H4 <i>W</i> ···N4	0.85	1.91	2.756 (4)	171
O4—H5 <i>W</i> ···O3	0.85	2.06	2.857 (4)	156
O3—H3 <i>W</i> ···Cl1 ⁱ	0.85	2.41	3.234 (3)	165
O5—H6W···Cl1 ⁱ	0.85	2.28	3.110 (3)	164
O1—H1 <i>W</i> ···O6 ⁱⁱ	0.85	1.88	2.723 (4)	173

supplementary materials

O6—H7 <i>W</i> ···O5 ⁱⁱⁱ	0.85	1.98	2.799 (4)	162	
O6—H8W···O4 ^{iv}	0.85	1.96	2.737 (4)	152	

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x, -y, z+1/2.